| Login


Altair OptiStruct™ Overview

Altair OptiStruct™ is an industry proven, modern structural analysis solver for linear and nonlinear problems under static and dynamic loadings. It is the market-leading solution for structural design and optimization.

Image
OptiStruct Introduction Video Watch this quick introduction video to learn how OptiStruct can help you.

Image
OptiStruct helps Euro-Pro improve product performance and durability Static analysis with OptiStruct unveils weak spots on plastic parts, before they are produced. Read the Euro-Pro Case Study
Based on finite-element and multi-body dynamics technology, and through advanced analysis and optimization algorithms, OptiStruct helps designers and engineers rapidly develop innovative, lightweight and structurally efficient designs.

Continuing to build on its 20 year legacy of providing innovative optimization technology first-to-market, OptiStruct offers novel solutions for the design and optimization of 3D printed lattice structures and advanced materials such as laminate composites, in keeping up with the latest manufacturing trends like additive manufacturing, while driving design trends.

OptiStruct is used by thousands of companies worldwide to analyze and optimize structures for their strength, durability and NVH (noise, vibration and harshness) characteristics.

It accurately handles nonlinearity of materials, geometries, and contact for applications including gasket analysis, bolt pre-tensioning, rotordynamics and thermo-structural analysis.

Quote
“By using OptiStruct in the product’s initial design period to carry out topography optimization for several major parts, our products can effectively avoid the constant experimenting, avoid the occurrence of resonance, shorten design cycles and improve product quality.”
–Zhifeng Xin, Director Mechanical/Thermal/Simulation/M&M
Lenovo Notebook Product Development

View Case Study

Benefits

Physique précise et complète

Une simulation inexacte ne vaut pas la peine d'être exécutée. Cela devient plus important lorsque les conceptions sont réalisées et optimisées en fonction des résultats de la simulation. Par conséquent, chez Altair, nous nous efforçons de développer des solutions d'analyse précises et complètes qui capturent le comportement des produits dans l'environnement dans lequel ils sont développés.

Solveur fortement parallélisé

OptiStruct est un solveur fortement parallélisé capable de tirer parti des dernières technologies hardware (HPC). Grâce à des méthodes telles que la décomposition de domaine, OptiStruct peut être exécuté sur des centaines de cœurs. Cela a des implications encore plus grandes dans le développement de la conception, permettant aux ingénieurs d'effectuer des campagne d'optimisation à grande échelle, de concevoir en considérant la fiabilité et la robustesse et d'effectuer des études d'exploration du concept.

Solveur Non-linéaire Complet

OptiStruct support les analyses en calcul statique et transitoire, permettant la prise en compte des non-linéarités de matériaux (y compris des propriétés thermo-dépendantes), de géométrie et de contact. Les chargements et la friction peuvent être définis avec une variation quasi-temporelle. Parmi les fonctionnalités supportées par le solveur : l’érosion des éléments, les matériaux hyper-élastiques, les matériaux définis par l’utilisateur et le contact coulissant continu en grands glissements. L’analyse powertrain (groupe motopropulseur) est compatible avec des vis précontraintes et des matériaux type gasket (joints d’étanchéité). Pour augmenter la vitesse du calcul, c’est possible d’utiliser la méthode de décomposition de domaines, en utilisant des processeurs multiples.

Le solveur le plus avancé pour l’analyse NVH (confort vibratoire et acoustique)

OptiStruct intègre les fonctionnalités les plus avancées ainsi que les processus automatisés requis pour réaliser des analyses efficaces pour des calculs de confort vibratoire et acoustique (NVH). Les analyses NVH sont applicables aux véhicules complets et elles peuvent être réalisées de manière efficace et rapide grâce à des processus automatisés innovants.

Better Performing, Lightweight and Innovative Designs

The strategic use of appropriate optimization technology throughout the design process maximizes the potential for designers and engineers to rapidly develop better performing designs. Through these advanced optimization algorithms in OptiStruct, often, better performance comes along with a reduction in weight through the development of an innovative design concept.

Des solutions par l’optimisation

Optimiser ! Optimiser ! Optimiser ! La manière la plus efficace de répondre aux nombreuses exigences parfois antagonistes mais aussi challengeantes, et de

manière économique et en un temps maitrisé est de faire appel à un logiciel d’optimisation dans le processus de développement.

La Simulation se doit de mener le process de dimensionnement.

C’est pourquoi, la stratégie de développement d’optimisation des solutions numériques avec Altair OptiStruct est l’un de nos différentiateurs en donnant à nos clients la meilleure technologie pour développer les meilleurs concepts.

20 ans de succès récompensé dans le domaine de l’optimisation

Depuis plus de 20 ans, OptiStruct est leader dans le développement de nouvelles technologies innovantes d’optimisation. Cela inclut plusieurs technologies inédites telles que l’optimisation topologique basée sur des critères en contraintes et en fatigue, la conception de structures lattice pour l’impression 3D, et l’optimisation d’empilement pour les structures composites entre autres. Optistruct offre la bibliothèque de réponses d’optimisation et de contraintes de fabrication la plus complète, permettant ainsi la formulation d’une très grande variété de problèmes d’optimisation.

Intégration transparente dans les processus existants

Intégré dans HyperWorks, OptiStruct peut aider à réduire considérablement les coûts liés aux solveurs concurrents. En outre, utilisant l’environnement de pre- et post-traitement existant, avec un meilleur flux de travail, OptiStruct peut s’intégrer de manière transparente dans un process déjà en place sans trop de perturbation.

Economisez un temps précieux sur vos études

L’accès à des messages d’erreur compréhensible et précis, combiné à une vérification complète des modélisations, participent à atteindre un excellent niveau de qualité de simulation. Cela permet une meilleure valorisation d’un temps qui serait sinon perdu en processus itératif de correction de modèle.

Facile d’accès

Utilisant un processus d’analyse intuitif s’articulant autour du langage de mise en donnée Nastran, couramment répandu, OptiStruct peut être pris en main rapidement et être intégré aux méthodologies déjà en place.

Gallery

Car frame design with topology optimization Equivalent Radiated Power (ERP) Non-linear material Large Strain Plasticity for Solids Typical optimization process on VW compressor bracket Additive manufacturing project at EADS Topography optimization of a door panel Composites optimization
Car frame design with topology optimization Equivalent Radiated Power (ERP) Non-linear material Large Strain Plasticity for Solids Typical optimization process on VW compressor bracket Additive manufacturing project at EADS Topography optimization of a door panel Composites optimization
Img Img Img Img Img Img Img Img

Capabilities

Integrated Fast and Large Scale Eigenvalue Solver: A built-in, standard feature of OptiStruct in an Automated Multi-level Sub-structuring Eigen Solver (AMSES) that can rapidly calculate thousands of modes with millions of degrees of freedom.

Advanced NVH Analysis: OptiStruct provides unique and advanced functionality for NVH analysis including one-step TPA (Transfer Path Analysis), Powerflow analysis, model reduction techniques (CMS and CDS super elements), design sensitivities, and an ERP (Equivalent Radiated Power) design criterion to optimize structures for NVH.

Robust solver for nonlinear analysis and powertrain durability: OptiStruct has grown to support a comprehensive range of physics for powertrain analysis. This includes solutions for heat transfer, bolt and gasket modeling, hyperelastic materials, and efficient contact algorithms.

Creating Design Concepts

  • Topology optimization: OptiStruct uses topology optimization to generate innovative concept design proposals. OptiStruct generates an optimal design proposal based on a user-defined design space, performance targets, and manufacturing constraints. Topology optimization can be applied to 1-D, 2-D and 3-D design spaces.

  • Topography optimization: For thin-walled structures, beads or swages are often used as reinforcement features. For a given set of bead dimensions, OptiStruct's topography optimization technology will generate innovative design proposals with the optimal bead pattern and location for reinforcement to meet certain performance requirements. Typical applications include panel stiffening and managing frequencies.

  • Free-size optimization: Free-size optimization is widely applied in finding the optimal thickness distribution in machined metallic structures and identifying the optimal ply shapes in laminate composites. Element thickness per material layer is a design variable in free-size optimization.

Optimization for Design Fine-Tuning

  • Size optimization: Optimal model parameters such as material properties, cross-sectional dimensions, and gauges can be determined through size optimization.

  • Shape optimization: Shape optimization is performed to refine an existing design through user-defined shape variables. The shape variables are generated using the morphing technology – HyperMorph – available in HyperMesh.

  • Free-shape optimization: OptiStruct’s proprietary technique for non-parametric shape optimization automatically generates shape variables and determines optimal shape contours based on design requirements. This relieves users from the task of defining shape variables and allows for greater flexibility for design improvements. Free-shape optimization is very effective in reducing high-stress concentrations.

Design and Optimization of Laminate Composites: A unique 3-phase process has been implemented in OptiStruct to aid in the design and optimization of laminate composites. The process is based on a natural and easy-to-use ply based modeling approach. This also facilitates incorporating various manufacturing constraints, such as ply drop-off, specific to laminate composite design. Application of this process yields optimal ply shapes (phase 1), optimal number of plies (phase 2) and the optimal ply stacking sequence (phase 3).

Design and Optimization of Additively Manufactured Lattice Structures: Lattice structures offer many desirable characteristics such as lightweight and good thermal properties. They are also highly desirable in biomedical implants due to their porous nature and the ability to facilitate the integration of tissue with the trabecular structure. OptiStruct has a unique solution to design such lattice structures based on topology optimization. Subsequently, large scale sizing optimization studies can be run on the lattice beams while incorporating detailed performance targets such as stress, buckling, displacement and frequency.

Analysis and Feature Highlights

Stiffness, Strength and Stability

  • Linear and nonlinear static analysis with contact and plasticity

  • Large displacement analysis with hyperelastic materials

  • Fast contact analysis

  • Buckling analysis

Noise and Vibrations

  • Normal modes analysis for real and complex eigenvalue analysis

  • Direct and modal frequency response analysis

  • Random response analysis

  • Response spectrum analysis

  • Direct and modal transient response analysis

  • Preloading using nonlinear results for buckling, frequency response, and transient analysis

  • Rotor dynamics

  • Coupled fluid-structure (NVH) analysis

  • AMSES large scale eigenvalue solver

  • Fast large scale modal solver (FASTFR)

  • Result output at peak response frequencies (PEAKOUT)

  • One-step transfer path analysis (PFPATH)

  • Radiated sound analysis

  • Frequency-dependent and poro-elastic material properties

Powertrain Durability

  • 1D and 3D bolt pretension

  • Gasket modeling

  • Contact modeling and contact-friendly elements

  • Plasticity with hardening

  • Temperature dependent material properties

  • Domain decomposition

Heat Transfer Analysis

  • Linear and nonlinear steady-state analysis

  • Linear transient analysis

  • Coupled thermo-mechanical analysis

  • One-step transient thermal stress analysis

  • Contact-based thermal analysis

Kinematics and Dynamics

  • Static, quasi-static, and dynamic analysis

  • Loads extraction and effort estimation

  • Optimization of system and flexible bodies

Structural Optimization

  • Topology, topography, and free-size optimization

  • Size, shape, and free-shape optimization

  • Design and optimization of laminate composites

  • Design and optimization of additively manufactured lattice structures

  • Equivalent static load method

  • Multi-model optimization

Complementary Solutions

Image
HyperStudy HyperStudy is a multi-disciplinary design study software that enables exploration and optimization of design performance and robustness. Overview Video | Learn More
Image
NVH Director The NVH Director employs Altair’s HyperWorks suite of computer-aided engineering tools in a fully integrated, user-friendly, customizable form to automate the tasks involved in NVH analysis. Learn More
Image
Multiscale Designer Multiscale Design is a software used for seamless integration of modeling, simulation, testing, uncertainty quantification and optimization of composite materials and structures at multiple spatial and temporal scales. Learn More
Image
Squeak and Rattle Director A set of software automations to rapidly identify and analyze design alternatives to eliminate the root causes of squeak and rattle (S&R) in assemblies. Overview Video | Learn More
View More